Stratification as a General Variance Reduction Method for Markov Chain Monte Carlo
نویسندگان
چکیده
منابع مشابه
Zero variance Markov chain Monte Carlo for Bayesian estimators
A general purpose variance reduction technique for Markov chain Monte Carlo (MCMC) estimators, based on the zero-variance principle introduced in the physics literature, is proposed to evaluate the expected value, μf , of a function f with respect to a, possibly unnormalized, probability distribution π. In this context, a control variate approach, generally used for Monte Carlo simulation, is e...
متن کاملDiscrepancy estimates for variance bounding Markov chain quasi-Monte Carlo
Markov chain Monte Carlo (MCMC) simulations are modeled as driven by true random numbers. We consider variance bounding Markov chains driven by a deterministic sequence of numbers. The star-discrepancy provides a measure of efficiency of such Markov chain quasi-Monte Carlo methods. We define a pull-back discrepancy of the driver sequence and state a close relation to the star-discrepancy of the...
متن کاملA Markov-Chain-Monte-Carlo-Based Method for System Identification
This paper describes a novel methodology for the identification of mechanical systems and structures from vibration response measurements. It combines prior information, observational data and predictive finite element models to produce configurations and system parameter values that are most consistent with the available data and model. Bayesian inference and a Metropolis simulation algorithm ...
متن کاملMarkov Chain Monte Carlo
Markov chain Monte Carlo is an umbrella term for algorithms that use Markov chains to sample from a given probability distribution. This paper is a brief examination of Markov chain Monte Carlo and its usage. We begin by discussing Markov chains and the ergodicity, convergence, and reversibility thereof before proceeding to a short overview of Markov chain Monte Carlo and the use of mixing time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM/ASA Journal on Uncertainty Quantification
سال: 2020
ISSN: 2166-2525
DOI: 10.1137/18m122964x